Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446952

RESUMO

Santolina impressa is an aromatic Asteraceae species endemic to Portugal, traditionally used for its anti-inflammatory properties. The aim of this study was to characterize S. impressa secretory structures, analyze the essential oil (EO) from the aerial organs, and evaluate its antiviral activity against herpes simplex viruses HSV-1 and HSV-2. Secretory structures were investigated by light and scanning microscopy, and the secretion was histochemically characterized. The EO from the aerial organs in full blooming was analyzed by gas chromatography with flame ionization detection and gas chromatography-mass spectrometry. Antiviral assays were performed by direct contact with viral suspensions (virucidal effect), and in infected Vero E6 cells, at different time periods during the viral replication cycle. Two types of secretory structures were described, biseriate glandular trichomes and secretory ducts, producing an oleoresin and a resin rich in flavonoids, respectively. Fifty compounds were identified in S. impressa EO, accounting for 87% of the total constituents. Monoterpenes constituted the main EO fraction (82%), with ß-pinene (13%) and ß-phellandrene (10%) being their major components. The EO interacted with HSV-1 and HSV-2 in a dose-dependent manner, thereby inactivating both viral infections. The EO did not evidence a virucidal effect but inhibited the HSV-1 and HSV-2 infection in Vero cells in a dose-dependent manner. However, further studies are needed to investigate the mode of action in the replication cycle.

2.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111608

RESUMO

In recent years, gold nanoparticles (AuNPs) have aroused the interest of many researchers due to their unique physicochemical and optical properties. AuNPs are being explored in a variety of biomedical fields, either in diagnostics or therapy, particularly for localized thermal ablation of cancer cells after light irradiation. Besides the promising therapeutic potential of AuNPs, their safety constitutes a highly important issue for any medicine or medical device. For this reason, in the present work, the production and characterization of physicochemical properties and morphology of AuNPs coated with two different materials (hyaluronic and oleic acids (HAOA) and bovine serum albumin (BSA)) were firstly performed. Based on the above importantly referred issue, the in vitro safety of developed AuNPs was evaluated in healthy keratinocytes, human melanoma, breast, pancreatic and glioblastoma cancer cells, as well as in a three-dimensional human skin model. Ex vivo and in vivo biosafety assays using, respectively, human red blood cells and Artemia salina were also carried out. HAOA-AuNPs were selected for in vivo acute toxicity and biodistribution studies in healthy Balb/c mice. Histopathological analysis showed no significant signs of toxicity for the tested formulations. Overall, several techniques were developed in order to characterize the AuNPs and evaluate their safety. All these results support their use for biomedical applications.

3.
ACS Omega ; 7(48): 44180-44186, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506152

RESUMO

6,7-Dehydroroyleanone (DHR) is a caspase-induced cytotoxic abietane diterpene, frequently found on Plectranthus spp. A pharmaceutical formulation consisting of a DHR-squalene conjugate was synthesized and analyzed by different techniques such as scanning electron microscopy (SEM). The facile production of the dispersion of DHR-squalene conjugate nanoparticles in phosphate buffer (pH 7.4) suggests that this nanodelivery platform may be an effective system to improve the solubility and bioavailability of DHR, so that therapeutical systemic levels may be achieved.

4.
Mar Drugs ; 20(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286431

RESUMO

Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation's impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs.


Assuntos
Produtos Biológicos , Doenças Cardiovasculares , Hipercolesterolemia , Nanopartículas , Phaeophyceae , Alga Marinha , Bovinos , Humanos , Ratos , Animais , Soroalbumina Bovina , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células CACO-2 , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Ratos Wistar , Phaeophyceae/metabolismo , Oxirredutases/metabolismo , Produtos Biológicos/metabolismo , Coenzima A/metabolismo , Portadores de Fármacos
5.
Biomolecules ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35053219

RESUMO

Breast cancer is a high-burden malignancy for society, whose impact boosts a continuous search for novel diagnostic and therapeutic tools. Among the recent therapeutic approaches, photothermal therapy (PTT), which causes tumor cell death by hyperthermia after being irradiated with a light source, represents a high-potential strategy. Furthermore, the effectiveness of PTT can be improved by combining near infrared (NIR) irradiation with gold nanoparticles (AuNPs) as photothermal enhancers. Herein, an alternative synthetic method using rosmarinic acid (RA) for synthesizing AuNPs is reported. The RA concentration was varied and its impact on the AuNPs physicochemical and optical features was assessed. Results showed that RA concentration plays an active role on AuNPs features, allowing the optimization of mean size and maximum absorbance peak. Moreover, the synthetic method explored here allowed us to obtain negatively charged AuNPs with sizes favoring the local particle accumulation at tumor site and maximum absorbance peaks within the NIR region. In addition, AuNPs were safe both in vitro and in vivo. In conclusion, the synthesized AuNPs present favorable properties to be applied as part of a PTT system combining AuNPs with a NIR laser for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/terapia , Cinamatos , Depsídeos , Ouro , Nanopartículas Metálicas , Terapia Fototérmica , Animais , Cinamatos/química , Cinamatos/farmacologia , Depsídeos/química , Depsídeos/farmacologia , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Nanomedicina Teranóstica , Ácido Rosmarínico
6.
Artigo em Inglês | MEDLINE | ID: mdl-34682308

RESUMO

Pigments are compounds of importance to several industries, for instance, the food industry, where they can be used as additives, color intensifiers, and antioxidants. As the current trend around the world is shifting to the use of eco-friendly commodities, demand for natural dyes is increasing. Melanins are pigments that are produced by several microorganisms. Pseudomonas putida ESACB 191, isolated from goat cheese rind, was described as a brown pigment producer. This strain produces a brown pigment via the synthetic Müeller-Hinton Broth. This brown compound was extracted, purified, analyzed by FTIR and mass spectrometry, and identified as eumelanin. The maximum productivity was 1.57 mg/L/h. The bioactivity of eumelanin was evaluated as the capacity for scavenging free radicals (antioxidant activity), EC50 74.0 ± 0.2 µg/mL, and as an acetylcholinesterase inhibitor, with IC50 575 ± 4 µg/mL. This bacterial eumelanin did not show cytotoxicity towards A375, HeLa Kyoto, HepG2, or Caco2 cell lines. The effect of melanin on cholesterol absorption and drug interaction was evaluated in order to understand the interaction of melanin present in the cheese rind when ingested by consumers. However, it had no effect either on cholesterol absorption through an intestinal simulated barrier formed by the Caco2 cell line or with the drug ezetimibe.


Assuntos
Queijo , Melaninas , Acetilcolinesterase , Bactérias , Células CACO-2 , Humanos
7.
Pharmaceuticals (Basel) ; 14(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063413

RESUMO

Sambucus nigra L. (S. nigra) is a shrub widespread in Europe and western Asia, traditionally used in medicine, that has become popular in recent years as a potential source of a wide range of interesting bioactive compounds. The aim of the present work was to develop a topical S. nigra extract formulation based on ethosomes and thus to support its health claims with scientific evidence. S. nigra extract was prepared by an ultrasound-assisted method and then included in ethosomes. The ethosomes were analyzed in terms of their size, stability over time, morphology, entrapment capacity (EC), extract release profile, stability over time and several biological activities. The prepared ethosomes were indicated to be well defined, presenting sizes around 600 nm. The extract entrapment capacity in ethosomes was 73.9 ± 24.8%, with an interesting slow extract release profile over 24 h. The extract-loaded ethosomes presented collagenase inhibition activity and a very good skin compatibility after human application. This study demonstrates the potential use of S. nigra extract incorporated in ethosomes as a potential cosmeceutical ingredient and on further studies should be performed to better understand the impact of S. nigra compounds on skin care over the time.

8.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920964

RESUMO

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process-however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Assuntos
Queimaduras/fisiopatologia , Composição de Medicamentos , Insulina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Regeneração , Pele/fisiopatologia , Administração Tópica , Animais , Sobrevivência Celular , Dicroísmo Circular , Liberação Controlada de Fármacos , Feminino , Células HaCaT , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Estabilidade Proteica , Eletricidade Estática , Fatores de Tempo
9.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33808984

RESUMO

Anaplastic thyroid carcinoma (ATC) is a very rare subtype of thyroid carcinoma and one of the most lethal malignancies. Poor prognosis is mainly associated with its undifferentiated nature, inoperability, and failing to respond to the typically used therapies for thyroid cancer. Photothermal Therapy (PTT) entails using light to increase tissues' temperature, leading to hyperthermia-mediated cell death. Tumours are more susceptible to heat as they are unable to dissipate it. By using functionalized gold nanoparticles (AuNPs) that transform light energy into heat, it is possible to target the heat to the tumour. This study aims to formulate ATC-targeted AuNPs able to convert near-infrared light into heat, for PTT of ATC. Different AuNPs were synthetized and coated. Size, morphology, and surface plasmon resonances band were determined. The optimized coated-AuNPs were then functionalized with ligands to assess ATC's specificity. Safety, efficacy, and selectivity were assessed in vitro. The formulations were deemed safe when not irradiated (>70% cell viability) and selective for ATC. However, when irradiated, holo-transferrin-AuNPs were the most cytotoxic (22% of cell viability). The biodistribution and safety of this formulation was assessed in vivo. Overall, this novel formulation appears to be a highly promising approach to evaluate in a very near future.

10.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353068

RESUMO

Breast cancer is one of the most frequently diagnosed malignancies and common causes of cancer death in women. Recent studies suggest that environmental exposures to certain chemicals, such as 7,12-Dimethylbenzanthracene (DMBA), a chemical present in tobacco, may increase the risk of developing breast cancer later in life. The first-line treatments for breast cancer (surgery, chemotherapy or a combination of both) are generally invasive and frequently associated with severe side effects and high comorbidity. Consequently, novel approaches are strongly required to find more natural-like experimental models that better reflect the tumors' etiology, physiopathology and response to treatments, as well as to find more targeted, efficient and minimally invasive treatments. This study proposes the development and an in deep biological characterization of an experimental model using DMBA-tumor-induction in Sprague-Dawley female rats. Moreover, a photothermal therapy approach using a near-infrared laser coupled with gold nanoparticles was preliminarily assessed. The gold nanoparticles were functionalized with Epidermal Growth Factor, and their physicochemical properties and in vitro effects were characterized. DMBA proved to be a very good and selective inductor of breast cancer, with 100% incidence and inducing an average of 4.7 tumors per animal. Epigenetic analysis showed that tumors classified with worst prognosis were hypomethylated. The tumor-induced rats were then subjected to a preliminary treatment using functionalized gold nanoparticles and its activation by laser (650-900 nm). The treatment outcomes presented very promising alterations in terms of tumor histology, confirming the presence of necrosis in most of the cases. Although this study revealed encouraging results as a breast cancer therapy, it is important to define tumor eligibility and specific efficiency criteria to further assess its application in breast cancer treatment on other species.


Assuntos
5-Metilcitosina/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Hipertermia Induzida , Neoplasias Mamárias Experimentais/terapia , Nanopartículas Metálicas/administração & dosagem , Modelos Teóricos , Animais , Peso Corporal , Feminino , Ouro/química , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Nanopartículas Metálicas/química , Ratos , Ratos Sprague-Dawley
11.
Pharmaceutics ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291738

RESUMO

Sambucus nigra L. is widely used in traditional medicine with different applications. However, confirmative studies are strongly required. This study aimed to assess the biological activities of the S. nigra flower's extract encapsulated into two different types of nanoparticles for optimizing its properties and producing further evidence of its potential therapeutic uses. Different nanoparticles (poly(lactide-co-glycolide, PLGA) and poly-Ɛ-caprolactone (PCL), both with oleic acid, were prepared by emulsification/solvent diffusion and solvent-displacement methods, respectively. Oleic acid was used as a capping agent. After the nanoparticles' preparation, they were characterized and the biological activities were studied in terms of collagenase, in vitro and in vivo anti-inflammatory, and in vitro cell viability. Rutin and naringenin were found to be the major phenolic compounds in the studied extract. The encapsulation efficiency was higher than 76% and revealed to have an impact on the release of the extract, mainly for the PLGA. Moreover, biochemical and histopathological analyses confirmed that the extract-loaded PLGA-based nanoparticles displayed the highest anti-inflammatory activity. In addition to supporting the previously reported evidence of potential therapeutic uses of S. nigra, these results could draw the pharmaceutical industry's interest to the novelty of the nanoproducts.

12.
Foods ; 9(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708417

RESUMO

Fucus vesiculosus is a brown macroalgae used in food and generally considered safe to be consumed, according to EU Directive (EC 258/97). The aim of this study is to analyze the effect of food preparation on F.vesiculosus of different origins on what concerns its chemical constituents and final bioactivities. The aqueous extract of the seaweeds were obtained at different temperatures, similar to food preparation and then purified by SPE. The compound identification was carried out by Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS/MS) and algae extracts microstructure were observed by Scanning Electron Microscopy (SEM). The activities were determined by using antioxidant activity, inhibition of acetylcholinesterase (AChE) and 3-hidroxi-3-methyl-glutaril-CoA (HMG-CoA) reductase (HMGR) together with Caco-2 cells line simulating the intestinal barrier. The activity of AChE and the HMGR were inhibited by the extracts giving IC50 values of 15.0 ± 0.1 µg/mL and 4.2 ± 0.1 µg/mL, respectively and 45% of the cholesterol permeation inhibition. The main compounds identified were phlorotannins and peptides derivatives. The mode of preparation significantly influenced the final bioactivities. Moreover, the in vitro results suggest that the preparation of F. vesiculosus as a soup could have hypercholesterolemia lowering effect.

13.
Biomolecules ; 10(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630112

RESUMO

The number of cases of failure in the treatment of infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, 7α-Acetoxy-6ß-hydroxyroyleanone (AHR), a diterpene isolated from different Plectranthus species, showed antibacterial activity, namely against Methicillin-resistant Staphylococcus aureus (MRSA) strains. The high antibacterial activity and low cytotoxicity render this natural compound an interesting alternative against resistant bacteria. The aim of this study is to understand the mechanism of action of AHR on MRSA, using the MRSA/Vancomycin-intermediate S. aureus (VISA) strain CIP 106760, and to study the AHR effect on lipid bilayers and on the cell wall. Although AHR interacted with lipid bilayers, it did not have a significant effect on membrane passive permeability. Alternatively, bacteria treated with this royleanone displayed cell wall disruption, without revealing cell lysis. In conclusion, the results gathered so far point to a yet undescribed mode of action that needs further investigation.


Assuntos
Diterpenos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Vancomicina/efeitos dos fármacos , Membrana Externa Bacteriana , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
14.
Biomolecules ; 10(5)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349416

RESUMO

Currently, insulin can only be administered through the subcutaneous route. Due to the flaws associated with this route, it is of interest to orally deliver this drug. However, insulin delivered orally has several barriers to overcome as it is degraded by the stomach's low pH, enzymatic content, and poor absorption in the gastrointestinal tract. Polymers with marine source like chitosan are commonly used in nanotechnology and drug delivery due to their biocompatibility and special features. This work focuses on the preparation and characterization of mucoadhesive insulin-loaded polymeric nanoparticles. Results showed a suitable mean size for oral administration (<600 nm by dynamic laser scattering), spherical shape, encapsulation efficiency (59.8%), and high recovery yield (80.6%). Circular dichroism spectroscopy demonstrated that protein retained its secondary structure after encapsulation. Moreover, the mucoadhesive potential of the nanoparticles was assessed in silico and the results, corroborated with ex-vivo experiments, showed that using chitosan strongly increases mucoadhesion. Besides, in vitro and in vivo safety assessment of the final formulation were performed, showing no toxicity. Lastly, the insulin-loaded nanoparticles were effective in reducing diabetic rats' glycemia. Overall, the coating of insulin-loaded nanoparticles with chitosan represents a potentially safe and promising approach to protect insulin and enhance peroral delivery.


Assuntos
Adesão Celular , Insulina/administração & dosagem , Mucosa Bucal/metabolismo , Nanopartículas/química , Adesivos/química , Administração Oral , Animais , Células CACO-2 , Quitosana/análogos & derivados , Humanos , Insulina/farmacocinética , Masculino , Absorção pela Mucosa Oral , Ratos , Ratos Wistar
15.
Nanomaterials (Basel) ; 10(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268611

RESUMO

Cancer is a major health concern and the prognosis is often poor. Significant advances in nanotechnology are now driving a revolution in cancer detection and treatment. The goal of this study was to develop a novel hybrid nanosystem for melanoma treatment, integrating therapeutic and magnetic targeting modalities. Hence, we designed long circulating and pH-sensitive liposomes loading both dichloro(1,10-phenanthroline) copper (II) (Cuphen), a cytotoxic metallodrug, and iron oxide nanoparticles (IONPs). The synthetized IONPs were characterized by transmission electron microscopy and dynamic light scattering. Lipid-based nanoformulations were prepared by the dehydration rehydration method, followed by an extrusion step for reducing and homogenizing the mean size. Liposomes were characterized in terms of incorporation parameters and mean size. High Cuphen loadings were obtained and the presence of IONPs slightly reduced Cuphen incorporation parameters. Cuphen antiproliferative properties were preserved after association to liposomes and IONPs (at 2 mg/mL) did not interfere on cellular proliferation of murine and human melanoma cell lines. Moreover, the developed nanoformulations displayed magnetic properties. The absence of hemolytic activity for formulations under study demonstrated their safety for parenteral administration. In conclusion, a lipid-based nanosystem loading the cytotoxic metallodrug, Cuphen, and displaying magnetic properties was successfully designed.

16.
Cancers (Basel) ; 11(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694306

RESUMO

Pancreatic cancer is one of the most lethal cancers, with an extremely poor prognosis. The development of more effective therapies is thus imperative. Natural origin compounds isolated from Plectranthus genus, such as parvifloron D (PvD), have cytotoxic and antiproliferative activity against human tumour cells. However, PvD is a very low water-soluble compound, being nanotechnology a promising alternative strategy to solve this problem. Therefore, the aim of this study was to optimize a nanosystem for preferential delivery of PvD to pancreatic tumour cells. Albumin nanoparticles (BSA NPs) were produced through a desolvation method. Glucose cross-linking and bioactive functionalization profiles of BSA platform were elucidated and analysed using static lattice atomistic simulations in vacuum. Using the optimized methodology, PvD was encapsulated (yield higher than 80%) while NPs were characterized in terms of size (100-400 nm) and morphology. Importantly, to achieve a preferential targeting to pancreatic cancer cells, erlotinib and cetuximab were attached to the PvD-loaded nanoparticle surface, and their antiproliferative effects were evaluated in BxPC3 and Panc-1 cell lines. Erlotinib conjugated NPs presented the highest antiproliferative effect toward pancreatic tumour cells. Accordingly, cell cycle analysis of the BxPC3 cell line showed marked accumulation of tumour cells in G1-phase and cell cycle arrest promoted by NPs. As a result, erlotinib conjugated PvD-loaded BSA NPs must be considered a suitable and promising carrier to deliver PvD at the tumour site, improving the treatment of pancreatic cancer.

17.
Int J Pharm ; 559: 13-22, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30664999

RESUMO

Hyaluronic acid (HA) is commonly used through intra-articular administration for viscosupplementation in osteoarthritis and other disorders. HA is generally supplied as an injection commonly reported as painful, with strong limitations after treatment. In this study, an alternative delivery system was constructed based on HA hydrogel and poly(lactic-co-glycolic acid) (PLGA) particles with oleic acid. Development studies included the determination of particle toxicity, hemolytic activity, in vitro and in vivo anti-inflammatory activity using macrophages and a murine model, respectively. This study showed that empty PLGA particles presented a mean size of 373 nm, while particles containing HA and oleic acid showed a marked particle size increase. The HA association efficiency was of 73.6% and 86.2% for PLGA particles without and with oleic acid, respectively. The in vitro HA release from PLGA particles revealed a sustained profile. Particles showed a good in vitro cell compatibility and the risk of hemolysis was less <1%, ensuring their safety. The in vivo anti-inflammatory study showed a higher inhibition for HA-loaded PLGA particles when compared to HA solution (78% versus 60%) and they were not different from the positive control, clearly suggesting that this formulation may be a promising alternative to the current HA commercial dosage form.


Assuntos
Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Osteoartrite/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sobrevivência Celular , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Camundongos , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7 , Ratos , Ratos Wistar , Viscossuplementação/métodos
18.
Pharmaceutics ; 10(4)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400382

RESUMO

Pancreatic cancer is the eighth leading cause of cancer death worldwide. For this reason, the development of more effective therapies is a major concern for the scientific community. Accordingly, plants belonging to Plectranthus genus and their isolated compounds, such as Parvifloron D, were found to have cytotoxic and antiproliferative activities. However, Parvifloron D is a very low water-soluble compound. Thus, nanotechnology can be a promising delivery system to enhance drug solubility and targeted delivery. The extraction of Parvifloron D from P. ecklonii was optimized through an acetone ultrasound-assisted method and isolated by Flash-Dry Column Chromatography. Then, its antiproliferative effect was selectivity evaluated against different tumor cell lines (IC50 of 0.15 ± 0.05 µM, 11.9 ± 0.7 µM, 21.6 ± 0.5, 34.3 ± 4.1 µM, 35.1 ± 2.2 µM and 32.1 ± 4.3 µM for BxPC3, PANC-1, Ins1-E, MCF-7, HaCat and Caco-2, respectively). To obtain an optimized stable Parvifloron D pharmaceutical dosage form, albumin nanoparticles were produced through a desolvation method (yield of encapsulation of 91.2%) and characterized in terms of size (165 nm; PI 0.11), zeta potential (-7.88 mV) and morphology. In conclusion, Parvifloron D can be efficiently obtained from P. ecklonii and it has shown selective cytotoxicity to pancreatic cell lines. Parvifloron D nanoencapsulation can be considered as a possible efficient alternative approach in the treatment of pancreatic cancer.

19.
J Ethnopharmacol ; 220: 147-154, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29626671

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Decoctions of Plectranthus species are traditionally ingested after large meals for treatment of food digestion and alcohol abuse. AIM OF THE STUDY: This study aims at associating the digestion-related ethno-uses of Plectranthus species decoctions to molecular mechanism that might explain them: easing digestion (AChE inhibition) and treating hangover (ADH inhibition) MATERIAL AND METHODS: Decoctions from Plectranthus species were analysed for their alcohol dehydrogenase (ADH) inhibition and acetylcholinesterase (AChE) inhibition, related with alcohol metabolism and intestinal motility, respectively. Identification of the active components was carried out by LC-MS/MS and the docking studies were performed with AChE and the bioactive molecules detected. RESULTS: All decoctions inhibited ADH activity. This inhibition was correlated with their rosmarinic acid (RA) content, which showed an IC50 value of 19 µg/mL, similar to the reference inhibitor CuCl2. The presence of RA also leads to most decoctions showing AChE inhibiting capacity. P. zuluensis decoction with an IC50 of 80 µg/mL presented also medioresinol, an even better inhibitor of AChE, as indicated by molecular docking studies. Furthermore, all decoctions tested showed no toxicity towards two human cell lines, and a high capacity to quench free radicals (DPPH), which also play a helpful in the digestive process, related with their RA content. CONCLUSIONS: All activities presented by the RA-rich Plectranthus decoctions support their use in treating digestion disorders and P. barbatus could explain its use also for alleviating hangover symptoms. Medioresinol, which is present in P. zuluensis, exhibited a significant AChE inhibition and may provide, in the future, a new lead for bioactive compounds.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , Plectranthus/química , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Intoxicação Alcoólica/tratamento farmacológico , Linhagem Celular , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/isolamento & purificação , Cromatografia Líquida , Cinamatos/química , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Doenças do Sistema Digestório/tratamento farmacológico , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Humanos , Concentração Inibidora 50 , Medicina Tradicional/métodos , Simulação de Acoplamento Molecular , Extratos Vegetais/administração & dosagem , Extratos Vegetais/toxicidade , Espectrometria de Massas em Tandem , Ácido Rosmarínico
20.
J Med Food ; 21(8): 801-807, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29431576

RESUMO

Rosmarinic acid (RA) is a phenolic compound with biological activity. The objective of the present study was to investigate whether this compound kept its biological activity in the presence of proteins. For this purpose, bovine serum albumin (BSA) was used as a model protein, and the capacity of the RA to inhibit acetylcholinesterase (AChE) and affect antioxidant activity was evaluated in the absence and presence of BSA. A mixture of phenolic compounds containing RA, obtained from a medicinal plant was added to this study. The AChE inhibitory activity of RA was reduced by ∼57% in the presence of BSA, while the antioxidant activity increased. These results lead to the investigation of the effect of RA on the BSA structure using Fourier transform infrared spectroscopy (FTIR). At 37°C and higher temperatures, RA caused a decrease in the temperature modifications on the protein structure. Furthermore, FTIR and native-gel analysis revealed that protein aggregation/precipitation, induced by temperature, was reduced in the presence of RA. The novelty of the present work resides in the study of the enzyme inhibitory activity and antioxidant capacity of polyphenols, such as RA, in the presence of a protein. The findings highlight the need to consider the presence of proteins when assessing biological activities of polyphenols in vitro and that enzyme inhibitory activity may be decreased, while the antioxidant capacity remains or even increases.


Assuntos
Cinamatos/química , Depsídeos/química , Fenóis/química , Soroalbumina Bovina/química , Animais , Temperatura Alta , Humanos , Fitoterapia , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA